Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37745595

RESUMO

The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells and extracellular matrix (ECM) in a hypoxic microenvironment. However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Thus, there is a need to investigate the interaction between primary neutrophils and natural killer cells and the resulting effects on tumor development. Here we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated extracellular cell matrix (ECM) bridge to elucidate how naive primary neutrophils respond to both patient derived tumor cells and tumor cell lines. Our data demonstrated that both patient derived head and neck squamous cell carcinoma (HNSCC) tumor cells and MDA-MB-231 breast cancer cells trigger cluster formation in neutrophils, and the swarm of neutrophils restricts tumor invasion through the generation of reactive oxygen species (ROS) and neutrophil extracellular trap (NETs) release within the neutrophil cluster. However, we also observed that the presence of neutrophils downregulates granzyme B in NK-92 cells and the resulting NETs can obstruct NK cells from penetrating the tumor mass in vitro suggesting a dual role for neutrophils in the TME. Further, using label-free optical metabolic imaging (OMI) we observed changes in the metabolic activities of primary neutrophils during the different swarming phases when challenged with tumor cells. Finally, our data demonstrates that neutrophils in direct contact, or in close proximity, with tumor cells exhibit greater metabolic activities (lower nicotinamide adenine dinucleotide phosphate (NAD(P)H) mean lifetime) compared to non-contact neutrophils.

2.
Microsyst Nanoeng ; 9: 154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106674

RESUMO

Immunotherapy remains more effective for hematologic tumors than for solid tumors. One of the main challenges to immunotherapy of solid tumors is the immunosuppressive microenvironment these tumors generate, which limits the cytotoxic capabilities of immune effector cells (e.g., cytotoxic T and natural killer cells). This microenvironment is characterized by hypoxia, nutrient starvation, accumulated waste products, and acidic pH. Tumor-hijacked cells, such as fibroblasts, macrophages, and T regulatory cells, also contribute to this inhospitable microenvironment for immune cells by secreting immunosuppressive cytokines that suppress the antitumor immune response and lead to immune evasion. Thus, there is a strong interest in developing new drugs and cell formulations that modulate the tumor microenvironment and reduce tumor cell immune evasion. Microphysiological systems (MPSs) are versatile tools that may accelerate the development and evaluation of these therapies, although specific examples showcasing the potential of MPSs remain rare. Advances in microtechnologies have led to the development of sophisticated microfluidic devices used to recapitulate tumor complexity. The resulting models, also known as microphysiological systems (MPSs), are versatile tools with which to decipher the molecular mechanisms driving immune cell antitumor cytotoxicity, immune cell exhaustion, and immune cell exclusion and to evaluate new targeted immunotherapies. Here, we review existing microphysiological platforms to study immuno-oncological applications and discuss challenges and opportunities in the field.

4.
Nat Commun ; 14(1): 6681, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865647

RESUMO

Numerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV+ head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus. Here, we evaluate multiple aspects of the memory-like natural killer cell response in human-derived bioengineered environments, including immune cell extravasation, tumor penetration, tumor killing, T cell dependence, virus suppression, and compatibility with retroviral medication. Overall, these results suggest that memory-like natural killer cells are capable of operating without T cell assistance and could simultaneously destroy head and neck cancer cells as well as reduce viral latency.


Assuntos
Infecções por HIV , Neoplasias de Cabeça e Pescoço , Vírus , Humanos , HIV , Células Matadoras Naturais , Imunoterapia/métodos
5.
Commun Biol ; 6(1): 925, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689746

RESUMO

Biological tissues are highly organized structures where spatial-temporal gradients (e.g., nutrients, hypoxia, cytokines) modulate multiple physiological and pathological processes including inflammation, tissue regeneration, embryogenesis, and cancer progression. Current in vitro technologies struggle to capture the complexity of these transient microenvironmental gradients, do not provide dynamic control over the gradient profile, are complex and poorly suited for high throughput applications. Therefore, we have designed Griddent, a user-friendly platform with the capability of generating controllable and reversible gradients in a 3D microenvironment. Our platform consists of an array of 32 microfluidic chambers connected to a 384 well-array through a diffusion port at the bottom of each reservoir well. The diffusion ports are optimized to ensure gradient stability and facilitate manual micropipette loading. This platform is compatible with molecular and functional spatial biology as well as optical and fluorescence microscopy. In this work, we have used this platform to study cancer progression.


Assuntos
Microfluídica , Neoplasias , Humanos , Citocinas , Difusão , Exobiologia , Microambiente Tumoral
6.
Bioengineering (Basel) ; 10(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237642

RESUMO

Current available animal and in vitro cell-based models for studying brain-related pathologies and drug evaluation face several limitations since they are unable to reproduce the unique architecture and physiology of the human blood-brain barrier. Because of that, promising preclinical drug candidates often fail in clinical trials due to their inability to penetrate the blood-brain barrier (BBB). Therefore, novel models that allow us to successfully predict drug permeability through the BBB would accelerate the implementation of much-needed therapies for glioblastoma, Alzheimer's disease, and further disorders. In line with this, organ-on-chip models of the BBB are an interesting alternative to traditional models. These microfluidic models provide the necessary support to recreate the architecture of the BBB and mimic the fluidic conditions of the cerebral microvasculature. Herein, the most recent advances in organ-on-chip models for the BBB are reviewed, focusing on their potential to provide robust and reliable data regarding drug candidate ability to reach the brain parenchyma. We point out recent achievements and challenges to overcome in order to advance in more biomimetic in vitro experimental models based on OOO technology. The minimum requirements that should be met to be considered biomimetic (cellular types, fluid flow, and tissular architecture), and consequently, a solid alternative to in vitro traditional models or animals.

7.
Reproduction ; 165(6): 617-628, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068140

RESUMO

In brief: Developing novel therapies to cure and manage endometriosis is a major unmet need that will benefit over 180 million women worldwide. Results from the current study suggest that inhibitors of oxidative phosphorylation may serve as novel agents for the treatment of endometriosis. Abstract: Current therapeutic strategies for endometriosis focus on symptom management and are not curative. Here, we provide evidence supporting the inhibition of oxidative phosphorylation (OXPHOS) as a novel treatment strategy for endometriosis. Additionally, we report an organotypic organ-on-a-chip luminal model for endometriosis. The OXPHOS inhibitors, curcumin, plumbagin, and the FDA-approved anti-malarial agent, atovaquone, were tested against the endometriosis cell line, 12Z, in conventional as well as the new organotypic model. The results suggest that all three compounds inhibit proliferation and cause cell death of the endometriotic cells by inhibiting OXPHOS and causing an increase in intracellular oxygen radicals. The oxidative stress mediated by curcumin, plumbagin, and atovaquone causes DNA double-strand breaks as indicated by the elevation of phospho-γH2Ax. Mitochondrial energetics shows a significant decrease in oxygen consumption in 12Z cells. These experiments also highlight differences in the mechanism of action as curcumin and plumbagin inhibit complex I whereas atovaquone blocks complexes I, II, and III. Real-time assessment of cells in the lumen model showed inhibition of migration in response to the test compounds. Additionally, using two-photon lifetime imaging, we demonstrate that the 12Z cells in the lumen show decreased redox ratio (NAD(P)H/FAD) and lower fluorescence lifetime of NAD(P)H in the treated cells confirming major metabolic changes in response to inhibition of mitochondrial electron transport. The robust chemotoxic responses observed with atovaquone suggest that this anti-malarial agent may be repurposed for the effective treatment of endometriosis.


Assuntos
Antimaláricos , Antineoplásicos , Curcumina , Endometriose , Feminino , Humanos , Curcumina/farmacologia , Atovaquona/farmacologia , Fosforilação Oxidativa , Endometriose/tratamento farmacológico , NAD , Proliferação de Células
8.
Nat Commun ; 13(1): 3086, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654785

RESUMO

Precision oncology continues to challenge the "one-size-fits-all" dogma. Under the precision oncology banner, cancer patients are screened for molecular tumor alterations that predict treatment response, ideally leading to optimal treatments. Functional assays that directly evaluate treatment efficacy on the patient's cells offer an alternative and complementary tool to improve the accuracy of precision oncology. Unfortunately, traditional Petri dish-based assays overlook much tumor complexity, limiting their potential as predictive functional biomarkers. Here, we review past applications of microfluidic systems for precision medicine and discuss the present and potential future role of functional microfluidic assays as treatment predictors.


Assuntos
Neoplasias , Medicina de Precisão , Bioensaio , Humanos , Microfluídica , Neoplasias/genética , Neoplasias/terapia
9.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454888

RESUMO

During the second half of the twentieth century, oncology adopted a tumor-centric approach to cancer treatment, focusing primarily on the tumor cell to identify new therapeutic targets [...].

10.
Cancers (Basel) ; 14(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35267541

RESUMO

BRAFV600E is the most common mutation driver in melanoma. This mutation is known to cause a brief burst of proliferation followed by growth arrest and senescence, which prevent an uncontrolled cell proliferation. This phenomenon is known as oncogene-induced senescence (OIS) and OIS escape is thought to lead to melanomagenesis. Much attention has been focused on the melanocyte-intrinsic mechanisms that contribute to senescence escape. Additional genetic events such as the loss of tumor suppressor PTEN and/or epigenetic changes that contribute to senescence escape have been described. However, the role of the skin microenvironment-specifically, the role of epidermal keratinocytes-on melanomagenesis is not fully understood. In this study, we employ a microfluidic platform to study the interaction between melanocytes expressing the BRAFV600E mutation as well as keratinocytes and dermal fibroblasts. We demonstrate that keratinocytes suppress senescence-related genes and promote the proliferation of transformed melanocytes. We also show that a keratinocyte-conditioned medium can alter the secretion of both pro- and anti-tumorigenic factors by transformed melanocytes. In addition, we show that melanocytes and keratinocytes from donors of white European and black African ancestry display different crosstalks; i.e., white keratinocytes appear to promote a more pro-tumorigenic phenotype compared with black keratinocytes. These data suggest that keratinocytes exert their influence on melanomagenesis both by suppressing senescence-related genes in melanocytes and by affecting the balance of the melanocyte-secreted factors that favor tumorigenesis.

11.
Biomaterials ; 283: 121454, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35299086

RESUMO

Renal cell carcinomas are common genitourinary tumors characterized by high vascularization and strong reliance on glycolysis. Despite the many available therapies for renal cell carcinomas, first-line targeted therapies, such as cabozantinib, and durable reaponses are seen in only a small percentage of patients. Yet, little is known about the mechanisms that drive response (or lack thereof). This dearth of knowledge can be explained by the dynamic and complex microenvironment of renal carcinoma, which remains challenging to recapitulate in vitro. Here, we present a microphysiological model of renal cell carcinoma, including a tubular blood vessel model of induced pluripotent stem cell-derived endothelial cells and an adjacent 3D carcinoma model. Our model recapitulated hypoxia, glycolic metabolism, and sprouting angiogenesis. Using our model, we showed that cabozantinib altered cancer cell metabolism and decreased sprouting angiogenesis but did not restore barrier function. This microphysiological model could be helpful to elucidate, through multiple endpoints, the contributions of the relevant environmental components in eliciting a functional response or resistance to therapy in renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Microambiente Tumoral
12.
Artigo em Inglês | MEDLINE | ID: mdl-34901585

RESUMO

Breakthroughs in metastatic breast cancer care require new model systems that can identify the unique features and vulnerabilities of each cancer. Primary tumor cultures are proposed to efficiently screen multiple treatment options in a patient-specific strategy to maximize therapeutic benefit, minimize toxicity, and enable mechanistic insights that inspire future biomarkers for patient selection. To realize the potential of patient-specific cultures, new tools are needed to capture cell-by-cell variability in behavior and dynamic response to treatments in living 3D specimens. Potential bioengineering tools that can achieve this include optical microscopy to image single-cell dynamics and microphysiological in vitro systems to evaluate cell-cell interactions and immunotherapies.

13.
EBioMedicine ; 73: 103634, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34673450

RESUMO

BACKGROUND: In head and neck cancer, intratumour lymphatic density and tumour lymphangiogenesis have been correlated with lymphatic metastasis, making lymphangiogenesis a promising therapeutic target. However, inter-patient tumour heterogeneity makes it challenging to predict tumour progression and lymph node metastasis. Understanding the lymphangiogenic-promoting factors leading to metastasis (e.g., tumour-derived fibroblasts or TDF), would help develop strategies to improve patient outcomes. METHODS: A microfluidic in vitro model of a tubular lymphatic vessel was co-cultured with primary TDF from head and neck cancer patients to evaluate the effect of TDF on lymphangiogenesis. We assessed the length and number of lymphangiogenic sprouts and vessel permeability via microscopy and image analysis. Finally, we characterised lymphatic vessel conditioning by TDF via RT-qPCR. FINDINGS: Lymphatic vessels were conditioned by the TDF in a patient-specific manner. Specifically, the presence of TDF induced sprouting, altered vessel permeability, and increased the expression of pro-lymphangiogenic genes. Gene expression and functional responses in the fibroblast-conditioned lymphatic vessels were consistent with the patient tumour stage and lymph node status. IGF-1, upregulated among patients, was targeted to validate our personalised medicine approach. Interestingly, IGF-1 blockade was not effective across different patients. INTERPRETATION: The use of lymphatic organotypic models incorporating head and neck TDF provides insight into the pathways leading to lymphangiogenesis in each patient. This model provided a platform to test anti-angiogenic therapeutics and inform of their effectiveness for individual patients. FUNDING: NIH R33CA225281. Wisconsin Head and Neck SPORE NIH P50DE026787. NIH R01AI34749.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Linfangiogênese , Neovascularização Patológica , Biomarcadores , Fibroblastos Associados a Câncer/patologia , Linhagem Celular , Técnicas de Cocultura , Imunofluorescência , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Imuno-Histoquímica , Neovascularização Patológica/metabolismo , Organoides
14.
APL Bioeng ; 5(1): 010902, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33532672

RESUMO

Cancer is a leading cause of death across the world and continues to increase in incidence. Despite years of research, multiple tumors (e.g., glioblastoma, pancreatic cancer) still have limited treatment options in the clinic. Additionally, the attrition rate and cost of drug development have continued to increase. This trend is partly explained by the poor predictive power of traditional in vitro tools and animal models. Moreover, multiple studies have highlighted that cell culture in traditional Petri dishes commonly fail to predict drug sensitivity. Conversely, animal models present differences in tumor biology compared with human pathologies, explaining why promising therapies tested in animal models often fail when tested in humans. The surging complexity of patient management with the advent of cancer vaccines, immunotherapy, and precision medicine demands more robust and patient-specific tools to better inform our understanding and treatment of human cancer. Advances in stem cell biology, microfluidics, and cell culture have led to the development of sophisticated bioengineered microscale organotypic models (BMOMs) that could fill this gap. In this Perspective, we discuss the advantages and limitations of patient-specific BMOMs to improve our understanding of cancer and how these tools can help to confer insight into predicting patient response to therapy.

15.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597234

RESUMO

Solid tumors generate a suppressive environment that imposes an overwhelming burden on the immune system. Nutrient depletion, waste product accumulation, hypoxia, and pH acidification severely compromise the capacity of effector immune cells such as T and natural killer (NK) cells to destroy cancer cells. However, the specific molecular mechanisms driving immune suppression, as well as the capacity of immune cells to adapt to the suppressive environment, are not completely understood. Thus, here, we used an in vitro microfluidic tumor-on-a-chip platform to evaluate how NK cells respond to the tumor-induced suppressive environment. The results demonstrated that the suppressive environment created by the tumor gradually eroded NK cell cytotoxic capacity, leading to compromised NK cell surveillance and tumor tolerance. Further, NK cell exhaustion persisted for an extended period of time after removing NK cells from the microfluidic platform. Last, the addition of checkpoint inhibitors and immunomodulatory agents alleviated NK cell exhaustion.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Humanos , Células Matadoras Naturais , Dispositivos Lab-On-A-Chip , Microfluídica , Neoplasias/tratamento farmacológico
16.
Biomaterials ; 270: 120640, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33592387

RESUMO

In cancer metastasis, extravasation refers to the process where tumor cells exit the bloodstream by crossing the endothelium and invade the surrounding tissue. Tumor cells engage in complex crosstalk with other active players such as the endothelium leading to changes in functional behavior that exert pro-extravasation effects. Most in vitro studies to date have only focused on the independent effects of molecular targets on the functional changes of cancer cell extravasation behavior. However, singular targets cannot combat complex interactions involved in tumor cell extravasation that affects multiple cell types and signaling pathways. In this study, we employ an organotypic microfluidic model of human vasculature to investigate the independent and combined role of multiple upregulated secreted factors resulting from cancer-vascular interactions during cancer cell extravasation. The device consists of a tubular endothelial vessel generated from induced pluripotent stem cell derived endothelial cells within a collagen-fibrinogen matrix with breast cancer cells injected through and cultured along the lumen of the vessel. Our system identified cancer-vascular crosstalk, involving invasive breast cancer cells, that results in increased levels of secreted IL-6, IL-8, and MMP-3. Our model also showed that upregulation of these secreted factors correlates with invasive/metastatic potential of breast cancer cells. We also used therapeutic inhibitors to assess the independent and combined role of multiple signaling factors on the overall changes in functional behavior of both the cancer cells and the endothelium that promote extravasation. Taken together, these results demonstrate the potential of our organotypic model in elucidating mechanisms through which cancer-vascular interactions can promote extravasation, and in conducting functional assessment of therapeutic drugs that prevent extravasation in cancer metastasis.


Assuntos
Neoplasias da Mama , Células Endoteliais , Linhagem Celular Tumoral , Humanos , Microfluídica , Comunicação Parácrina
17.
Lab Chip ; 21(6): 1139-1149, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33533390

RESUMO

Melanoma evolution is a complex process. The role epidermal keratinocytes and dermal fibroblasts play in this process and the mechanisms involved in tumor-stroma interactions remain poorly understood. Here, we used a microfluidic platform to evaluate the cross-talk between human primary melanoma cells, keratinocytes and dermal fibroblasts. The microfluidic device included multiple circular chambers separated by a series of narrow connection channels. The microdevice design allowed us to develop a new cell patterning method based on air-walls, removing the need for hydrogel barriers, porous membranes, or external equipment. Using this method, we co-cultured melanoma cells in the presence of keratinocytes and/or dermal fibroblasts. The results demonstrated that the presence of dermal fibroblasts and keratinocytes led to changes in melanoma cell morphology and growth pattern. Molecular analysis revealed changes in the chemokine secretion pattern, identifying multiple secreted factors involved in tumor progression. Finally, optical metabolic imaging showed that melanoma cells, fibroblasts, and keratinocytes exhibited different metabolic features. Additionally, the presence of stromal cells led to a metabolic shift in melanoma cells, highlighting the role the skin microenvironment on melanoma evolution.


Assuntos
Melanoma , Microfluídica , Células Cultivadas , Fibroblastos , Humanos , Queratinócitos , Fenótipo , Microambiente Tumoral
18.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260673

RESUMO

Tumor-specific metabolic adaptations offer an interesting therapeutic opportunity to selectively destroy cancer cells. However, solid tumors also present gradients of nutrients and waste products across the tumor mass, forcing tumor cells to adapt their metabolism depending on nutrient availability in the surrounding microenvironment. Thus, solid tumors display a heterogenous metabolic phenotype across the tumor mass, which complicates the design of effective therapies that target all the tumor populations present. In this work, we used a microfluidic device to study tumor metabolic vulnerability to several metabolic inhibitors. The microdevice included a central chamber to culture tumor cells in a three-dimensional (3D) matrix, and a lumen in one of the chamber flanks. This design created an asymmetric nutrient distribution across the central chamber, generating gradients of cell viability. The results revealed that tumor cells located in a nutrient-enriched environment showed low to no sensitivity to metabolic inhibitors targeting glycolysis, fatty acid oxidation, or oxidative phosphorylation. Conversely, when cell density inside of the model was increased, compromising nutrient supply, the addition of these metabolic inhibitors disrupted cellular redox balance and led to tumor cell death.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Modelos Biológicos , Neoplasias/metabolismo , Contagem de Células , Humanos , Células MCF-7 , Necrose , Neoplasias/patologia , Hipóxia Tumoral
19.
Cancers (Basel) ; 12(5)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384738

RESUMO

The extracellular matrix (ECM) composition greatly influences cancer progression, leading to differential invasion, migration, and metastatic potential. In breast cancer, ECM components, such as fibroblasts and ECM proteins, have the potential to alter cancer cell migration. However, the lack of in vitro migration models that can vary ECM composition limits our knowledge of how specific ECM components contribute to cancer progression. Here, a microfluidic model was used to study the effect of 3D heterogeneous ECMs (i.e., fibroblasts and different ECM protein compositions) on the migration distance of a highly invasive human breast cancer cell line, MDA-MB-231. Specifically, we show that in the presence of normal breast fibroblasts, a fibronectin-rich matrix induces more cancer cell migration. Analysis of the ECM revealed the presence of ECM tunnels. Likewise, cancer-stromal crosstalk induced an increase in the secretion of metalloproteinases (MMPs) in co-cultures. When MMPs were inhibited, migration distance decreased in all conditions except for the fibronectin-rich matrix in the co-culture with human mammary fibroblasts (HMFs). This model mimics the in vivo invasion microenvironment, allowing the examination of cancer cell migration in a relevant context. In general, this data demonstrates the capability of the model to pinpoint the contribution of different components of the tumor microenvironment (TME).

20.
Lab Chip ; 20(9): 1586-1600, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297896

RESUMO

Lymphatic vessels (LVs) have been suggested as a preferential conduit for metastatic progression in breast cancer, where a correlation between the occurrence of lymph node metastasis and an increased extracellular matrix (ECM) density has been reported. However, the effect of ECM density on LV function is largely unknown. To better understand these effects, we used a microfluidic device to recreate tubular LVs in a collagen type I matrix. The density of the matrix was tailored to mimic normal breast tissue using a low-density collagen (LD-3 mg mL-1) and cancerous breast tissue using a high-density collagen (HD-6 mg mL-1). We investigated the effect of ECM density on LV morphology, growth, cytokine secretion, and barrier function. LVs cultured in HD matrices showed morphological changes as compared to LVs cultured in a LD matrix. Specifically, LVs cultured in HD matrices had a 3-fold higher secretion of the pro-inflammatory cytokine, IL-6, and a leakier phenotype, suggesting LVs acquired characteristics of activated vessels. Interestingly, LV leakiness was mitigated by blocking the IL-6 receptor on the lymphatic ECs, maintaining endothelium permeability at similar levels of LV cultured in a LD matrix. To recreate a more in vivo microenvironment, we incorporated metastatic breast cancer cells (MDA-MB-231) into the LD and HD matrices. For HD matrices, co-culture with MDA-MB-231 cells exacerbated vessel leakiness and secretion of IL-6. In summary, our data suggest that (1) ECM density is an important microenvironmental cue that affects LV function in the breast tumor microenvironment (TME), (2) dense matrices condition LVs towards an activated phenotype and (3) blockade of IL-6 signaling may be a potential therapeutic target to mitigate LV dysfunction. Overall, modeling LVs and their interactions with the TME can help identify novel therapeutic targets and, in turn, advance therapeutic discovery.


Assuntos
Neoplasias da Mama/metabolismo , Matriz Extracelular/metabolismo , Dispositivos Lab-On-A-Chip , Vasos Linfáticos/metabolismo , Neoplasias da Mama/patologia , Células Cultivadas , Matriz Extracelular/patologia , Feminino , Humanos , Vasos Linfáticos/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA